Ligand-Based Virtual Screening Using Graph Edit Distance as Molecular Similarity Measure
نویسندگان
چکیده
منابع مشابه
Bayesian Graph Edit Distance
ÐThis paper describes a novel framework for comparing and matching corrupted relational graphs. The paper develops the idea of edit-distance originally introduced for graph-matching by Sanfeliu and Fu [1]. We show how the Levenshtein distance can be used to model the probability distribution for structural errors in the graph-matching problem. This probability distribution is used to locate mat...
متن کاملApproximating Graph Edit Distance Using GNCCP
The graph edit distance (GED) is a flexible and widely used dissimilarity measure between graphs. Computing the GED between two graphs can be performed by solving a quadratic assignment problem (QAP). However, the problem is NP complete hence forbidding the computation of the optimal GED on large graphs. To tackle this drawback, recent heuristics are based on a linear approximation of the initi...
متن کاملFusing similarity rankings in ligand-based virtual screening
Data fusion is the name given to a range of methods for combining multiple sources of evidence. This mini-review summarizes the use of one such class of methods for combining the rankings obtained when similarity searching is used for ligand-based virtual screening. Two main approaches are described: similarity fusion involves combining rankings from single searches based on multiple similarity...
متن کاملScoring ligand similarity in structure-based virtual screening.
Scoring to identify high-affinity compounds remains a challenge in virtual screening. On one hand, protein-ligand scoring focuses on weighting favorable and unfavorable interactions between the two molecules. Ligand-based scoring, on the other hand, focuses on how well the shape and chemistry of each ligand candidate overlay on a three-dimensional reference ligand. Our hypothesis is that a hybr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Information and Modeling
سال: 2019
ISSN: 1549-9596,1549-960X
DOI: 10.1021/acs.jcim.8b00820